Â鶹´«Ã½

Unit Catalogue

CHEL0009: Computer programming 1

Semester 2

Credits: 5

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
To provide a basic introduction to FORTRAN programming. After successfully completing this unit the student should:
* understand the need for programming within Chemical Engineering;
* be able to draw and understand program flowsheets;
* be able to break simple problems down into a series of defined steps and formulate them into an algorithm to solve the problem;
* be able to use a FORTRAN compiler to produce and edit simple programs;
* be in a position to use program code from other sources, e.g. text books
Content:
This course will run on an informal basis and will essentially be a teach-yourself exercise with guidance from myself and a demonstrator. Learning to program computers is like learning another spoken language - you generally get further by teaching yourself and practising.
* Discussion session on the role of programming within Chemical Engineering
* Assignment 1 - produce algorithms and flowsheets for a given set of examples
* Assignment 2 - produce a working FORTRAN program to calculate the least squares regression line for a given set of data points.
* Assignment 3 - produce a working FORTRAN program which uses the Smoker equations to calculate the number of theoretical plates in a distillation column.
* Assignment 4 - produce a working FORTRAN program to sort a set of 10 random numbers (in the range 0 - 100) into numerical order.


CHEL0011: Computer programming

Semester 2

Credits: 5

Contact:

Topic:

Level: Level 2

Assessment: CW100

Requisites: Pre CHEL0009

Aims & learning objectives:
To develop programming ideas from CE1 computing course and show some simulation examples, e.g. simultaneous ODE solving, of one/some of the laboratory experiments. To introduce the use of FORTRAN for dynamic simulation for the solution of non steady state processes. After successfully completing this unit the student should be able to:
* solve problems generated in the Mathematics course on numerical methods through the "in-house" programming route in FORTRAN.
*
Content:
Structure of numerical integration routines (brief revision of CE2.01)
* Use of subroutines, and methods for argument passing
* Use of dedicated simulation packages and their advantages versus programming
* Review of available programming routine Libraries
* Transfer of data between packages


ECOI0001: Principles of microeconomics

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 1

Assessment: EX100

Requisites: Ex ECOI0006

Aims & learning objectives:
This course is designed for non-specialist economists and will provide an introduction to micro economic analysis with a minimum of technical apparatus. The emphasis will be on policy application and evaluation with particular reference to the UK.
Content:
Scarcity and choice; resource allocation; distribution and fairness; the market economy; the cases for and against government intervention; policy issues - protecting the environment, privatisation and regulation of industry.


ECOI0002: Principles of macroeconomics

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 1

Assessment: EX100

Requisites: Ex ECOI0007

Aims & learning objectives:
This course is designed for non-specialist economists and will provide an introduction to macro economic analysis with a minimum of technical apparatus. The emphasis will be on policy application and evaluation with particular reference to the UK.
Content:
The aggregate economy: measuring output; economic growth; inflation; unemployment; the balance of payments ; the UK and the European economy.


ECOI0006: Introductory microeconomics

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 1

Assessment: EX50 OT50

Requisites: Ex ECOI0001

Aims & learning objectives:
The course is designed to provide an introduction to the methods of microeconomic analysis, including the use of simple economic models and their application. Students should gain an ability to derive conclusions from simple economic models and evaluate their realism and usefulness.
Content:
An introduction to economic methodology; the concept of market equilibrium; the use of demand and supply curves, and the concept of elasticity; elementary consumer theory, indifference curves and their relationship to market demands; elementary theory of production, production possibilities and their relationship to cost curves; the supply behaviour of competitive firms and its relationship to supply curves; the idea of general competitive equilibrium; the efficiency properties of competitive markets; examples of market failure.


ECOI0007: Introductory macroeconomics

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 1

Assessment: EX50 OT50

Requisites: Ex ECOI0002

Aims & learning objectives:
The course is designed to provide an introduction to the methods of macroeconomic analysis, including the use of simple macroeconomic models and their application in a UK policy context.
Content:
The circular flow of income and expenditure; national income accounting; aggregate demand and supply; the components and determinants of private and public aggregate expenditure in closed and open economies; output and the price level in the short- and long -run; monetary institutions and policy. The analysis of inflation and unemployment policies, the balance of payments and exchange rates, savings and economic growth.


ECOI0010: Intermediate microeconomics

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 2

Assessment: EX50 OT50

Requisites: Pre ECOI0006

Aims & learning objectives:
The aim is to provide students specialising in economics with the analytical foundations for the study of resource allocation within the household, firm, government, or other institutions in a modern economy. It is essential for anyone wishing to undertake further study of the economics of industry, labour, environment and other sectoral economic issues.
Content:
The course will cover the theory of consumer behaviour, the theory of the firm in a competitive situation, industrial organisation and imperfect competition, the theory of factor markets, the economics of information, welfare economics and general equilibrium theory.


ECOI0018: Mathematical economics

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 2

Assessment: EX80 CW20

Requisites: Pre ECOI0006, Pre ECOI0007

Aims & learning objectives:
The aim of this course is to equip students with an understanding of, and an ability to use, mathematical methods in economics
Content:
The course covers constrained optimisation for the household and the firm using the Lagrangian method, including duality; linear programming; matrix algebra as applied to input-output analysis and macro-models; the use of first and second order difference and differential equations in economic dynamics; simple non-linear dynamics. Students who have completed the first year of a Mathematics degree programme or have A-level Mathematics may also take this unit.


ECOI0024: Economics of development 1

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX50 ES30 CW20

Requisites: Pre ECOI0001, Pre ECOI0002, Pre ECOI0006, Pre ECOI0007

Aims & learning objectives:
To relate economic theory to debates over the determinants of global poverty, and over the prospects for economic development and poverty reduction in low and middle income countries.
Content:
The status of development economics as a sub-discipline. Open and closed dual economy models of industrialization. Industrialization and trade strategies. Definition and measurement of poverty. Models of the farm-household, and theories of agrarian change. Demographic transition and the environment. As well as the stated pre-requisites students must also have taken at least 2 second year economics units.


ECOI0025: Economics of development 2

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX50 ES50

Requisites: Pre ECOI0024, Pre ECOI0028

Aims & learning objectives:
To apply general theories of economic development to contemporary issues in selected low and middle income countries, and to understand the relationship between economics and other social science disciplines relevant to the analysis of these issues.
Content:
Development economics is first located within the wider framework of development studies. Contemporary policy issues in selected low and middle income countries are then considered, with a current focus on the origins, components and effects of stabilisation and structural adjustment in Sub-Saharan Africa and South Asia.


ECOI0026: Economics of transition

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010, Pre ECOI0011

Aims & learning objectives:
To use economic analysis to understand the changes which are taking place in Central and Eastern Europe and the former Soviet Union, relating them to the creation of market economies.
Content:
Topics covered will include the speed and sequencing of adjustment; privatisation; financial markets; foreign trade; growth and inflation; legal changes; the labour market; public finance issues.


ECOI0027: International monetary economics

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010, Pre ECOI0011

Aims & learning objectives:
The aim is to present a fairly rigorous account of the material that relates to monetary aspects of an open economy. The emphasis is on theory and analysis rather than policy. Students should gain a critical appreciation of the theoretical tools used in this important area of economics alongside an understanding of the different "economic" worlds they can be used to create.
Content:
The course tries to emphasise debate by generally constrasting a Keynesian real side approach with a more classically inspired monetary approach. Specific topics include: the nature and significance of the balance of payments; parity concepts; the "efficient markets" hypothesis; devaluation; open economy macroeconomics; flexible versus fixed exchange rates; the foreign trade sector, "Europe" and international policy co-ordination.


ECOI0028: Economic growth & natural resources

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010, Pre ECOI0011

Aims & learning objectives:
The aim is to provide a fairly sophisticated account of theories of economic growth and of natural resource use, leading on to a discussion of the concept of sustainable development. Though the course draws on some techniques of dynamic optimisation, the emphasis is on economic intuition and empirical relevance rather than rigorous mathematical proof.
Content:
The neo-classical model of growth; endogenous growth; optimal saving; depletion of exhaustible resources; management of renewable resources; intergenerational equity; sustainable development.


ECOI0029: Environmental economics

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010

Aims & learning objectives:
The course provides the economic perspective on environmental regulation and on the management of natural resources. The emphasis is on the use of economic tools to value environmental impacts and the use of natural resources; and to design cost effective methods of controlling pollution and misuse of the natural environment.
Content:
The course will discuss the welfare economic basis of environmental economics and why market systems do not provide adequate environmental protection. It will go on to study different methods of valuing the environment and on regulating it in a national context. Finally it will deal with the theme of environment and development, and the idea of sustainable development.


ECOI0030: Advanced microeconomics

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010, Pre ECOI0018

Aims & learning objectives:
The aim of this course is to build on second year microeconomics and introduce topics that are the subject of recent academic research. This will provide students with: (i) an understanding of the scope of modern microeconomics and its applications, (ii) an ability to read and understand current literature in microeconomics, (iii) an ability to use advanced microeconomic concepts in analysing specific issues.
Content:
The course covers topics that deal with three inter-related issues: the passage of time, uncertainty about the future, the use of information. These include: the principles of decision making under uncertainty, with applications to insurance, stock-markets and firm behaviour; investment behaviour of firms under certainty and uncertainty; problems of asymmetric information; screening and signalling; strategic behaviour.


ECOI0031: Advanced macroeconomics

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0011

Aims & learning objectives:
The aim of this course is to build on second year macroeconomics and introduce topics that are the subject of recent academic research, this will provide students with: (I) anunderstanding of the scope of modern macroeconomics and its applications, (ii) an ability to read and understand current literature in macroeconomics, (iii) an ability to use advanced macroeconomic concepts in analysing specific issues.
Content:
The course covers in depth two inter-related issues: the causes of business cycles and of unemployment. Topics covered include modern real business cycle theory; endogenous business cycles, simple non-linear models, wage and price rigidity, insider and outsider behaviour, efficiency wages and unemployment hysteresis.


ECOI0034: International trade

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010

Aims & learning objectives:
The aim of the course is to provide an understanding of the way in which economic theory can be applied to issues such as why countries engage in international trade and why they adopt trade restraints. The emphasis of the course is on theory and analysis rather than description. Students will become more skilled in understanding and applying economic analysis and more aware of economic debates concerning current issues in international trade.
Content:
After an introduction to basic concepts, the topics discussed will include: comparative advantage; the gains from trade; adjustment costs; the Heckscher-Ohlin-Samuelson model; the Specific Factors Model; theories of intra-industry trade; the costs of protection, smuggling, trade taxes as a revenue source; the optimum tariff; export subsidies; international cartels, quotas and voluntary export restraint,; international integration; multinational enterprises and the welfare effects of the international movement of factors of production.


ECOI0035: Public expenditure & public choice

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010

Aims & learning objectives:
The aim of the course is to examine alternative ways by which the allocation of resources within the public sector can be evaluated. Criteria for evaluation of public expenditure are discussed and techniques, such as cost benefit analysis, are appraised. An important learning objective is to develop an understanding of how different perspectives can be applied. In particular, the standard public finance approach is contrasted with the more recent public choice approach. The course is theoretical and analytical rather than descriptive.
Content:
The course begins with a review of welfare economics (- as public expenditure analysis is applied welfare economics). Market failure and the rationale for government intervention is assessed. The impact of alleged failings in the political process is also assessed. The behaviour of voters, political parties, bureaucrats and pressure groups is analysed using microeconomic theory. The growth of the public sector is considered in terms of both market and government failure. Techniques for public sector appraisal are discussed.


ECOI0036: Economics of taxation

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0010, Pre ECOI0011

Aims & learning objectives:
The aim is to provide criteria which can be used to assess different taxes. The student will learn how to appraise tax reform against a set of criteria which include efficiency, equity, etc. The learning objective is to develop skills associated with the application of economic theory. The course is theoretical and analytical rather than descriptive.
Content:
The course begins with an analysis of the welfare costs of taxation. Tax incidence is discussed. The effect of tax on work effort, saving and risk taking is explored (and, in particular, the claims of supply-side economists are assessed). Tax expenditures (e.g. tax relief for charitable giving) are appraised. Tax evasion and policy to deter tax evasion is discussed International taxation is considered. The choice between taxation and government borrowing is examined.


ECOI0037: Macroeconomic modelling

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites:

Aims & learning objectives:
The aim is to provide a thorough grounding in the practice, techniques and limitations of macroeconomic modelling.
Content:
Building a macroeconomic model, optimisation subject to the constraints of a model, comparison of UK macroeconomic models and industry forecasting models.


ECOI0038: Advanced econometrics 1

Semester 1

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0021, Pre ECOI0020

Aims & learning objectives:
The aim is to extend the knowledge of econometrics to a very high and rigorous level. The language is a combination of matrix algebra and maximum likelihood. The emphasis is on both theory and applications in equal measure. The course concentrates on both time series analysis and cross section analysis.
Content:
The course builds on the econometrics course and includes 3sls, fiml, probit, logit and other limited dependent variable techniques and sure.


ECOI0039: Advanced econometrics 2

Semester 2

Credits: 6

Contact:

Topic: Economics

Level: Level 3

Assessment: EX100

Requisites: Pre ECOI0038

Aims & learning objectives:
The aim is to extend the knowledge of econometrics to a very high and rigorous level. The language is a combination of matrix algebra and maximum likelihood. The emphasis is on both theory and applications in equal measure. The course concentrates on both time series analysis.
Content:
The course builds on the Advanced Econometrics I course and includes splines, vars, Granger causality, Box and Cox methods and spectral analysis.


ECOI0045: Placement

Academic Year

Credits: 60

Contact:

Topic:

Level: Level 2

Assessment:

Requisites:

Aims & learning objectives:
The placement period enables the student to gain valuable practical experience.
Content:
Please see the Director or Studies or course tutor for details about individual placements.


EDUC0001: Exploring effective learning

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
This unit is intended for those students who wish to explore their own learning and to develop strategies for improving it. The unit reviews learning in lectures, tutorials, seminars etc and assessment as encountered by students in higher education. Starting from the students own approaches to learning it considers more effective ways based on experience and research.
Content:
The nature of learning; what is learnt (skills, knowledge, values etc.); learning styles; learning in groups; autonomy in learning; communication as part of the learning process; study skills; presentation skills; time management; assessment and being assessed. This is the recommended unit for those wishing to do one education unit in the year, outside their degree programme.


EDUC0002: Learning: Theory & context

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
This unit will consider more theoretical aspects of learning. It will consider theories of learning and their application in particular situations including schools, colleges, universities and lifelong learning. It will also explore the implications of new technologies for learning and the impact of visual literacy on learning.
Content:
Learning theories; information processing; experiential learning; metacognition; reflection; language and learning; memory. Contexts for learning: schools, further education, higher education, distance and open learning, the workplace, lifelong learning. It is advisable to have done EDUC0001 before this unit, but it is not a requirement. However, Natural Science students must have taken EDUC0001 in order to undertake this unit.


EDUC0003: Education in society

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: CW100

Requisites:

Aims & learning objectives:
This unit will consider the role of education in society. It will be based on an assessment of the purposes of education and of educational organisations such as schools, colleges and universities. It will consider government policies towards education; how these policies are formed and what they mean in practice. Examples will be drawn from the UK and wider.
Content:
Aims and purposes of education in different societies and through time; the politics of education; the role of state in education policy and practice: national curricula, national development plans, centralised and decentralised systems, the relationship between education and culture; the hidden curriculum; vocationalism; educational alternatives; Europeanisation and globalisation.


EDUC0004: Educational institutions as organisations

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: CW100

Requisites:

Aims & learning objectives:
This unit considers educational institutions as organisations. It will look at how these institutions are organised around their key purposes. It will consider key organisational issues such as curriculum design and implementation, equal opportunities, staff development, measuring and identifying effectiveness, ways of improving the quality of provision; the learning institution.
Content:
Schools/colleges/universities as organisations; purposes of the organisations and the practical implications; curriculum purposes and design; equalising opportunities: class, gender, race etc; curriculum strategies: setting, banding, streaming, differentiating, learning support/special needs, pastoral care, assessment, cross-curricular elements; measuring/identifying effectiveness and approaches to improvement; the culture of the teacher: staff development/professional development issues; open learning, lifelong learning, access to learning and accreditation of learning.


EDUC0005: Science education in practice

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites:

Aims & learning objectives:
This unit considers teaching and theories of teaching within the context of science education. The unit includes practical activities within a teaching context which are designed to illustrate the underlying theories. The unit considers issues such as curriculum, assessment, purposes, elements of instructional design and the role of the teacher.
Content:
The relationship between teaching and learning; issues related to designing a curriculum for science: why teach science, how do we learn science, elements of science teaching, conceptual nature of science learning; designing a science curriculum; implementing an aspect of a science curriculum and evaluating it; assessing learning in science. This unit is intended for science, engineering and mathematics students who may be interested in a career in teaching.


EDUC0006: Issues in science education

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites:

Aims & learning objectives:
This unit considers key issues in science education. Examples include: the purposes of science education, public understanding of science, how science is learnt, science learning in relation to practical experience, assessment of science learning, equal opportunities in science education.
Content:
The issues will change from time to time, examples include: Theories of learning science, their practical implications and value to the science educator, for example, constructivism and Cognitive Acceleration through Science Education (CASE); the nature and role of practical experience in science learning; equal opportunities in science education; the purposes of science education in for example, the public understanding of science; the nature of science in National Curricula.


ELEC0047: Design & realisation of integrated circuits

Semester 2

Credits: 6

Contact:

Topic:

Level: Undergraduate Masters

Assessment: EX100

Requisites:

Aims & learning objectives:
This course covers all aspects of the realisation of integrated circuits, including both digital, analogue and mixed-signal implementations. Consideration is given to the original specification for the circuit which dictates the optimum technology to be used also taking account of the financial implications. The various technologies available are described and the various applications, advantages and disadvantages of each are indicated. The design of the circuit building blocks for both digital and analogue circuits are covered. Computer aided design tools are described and illustrated and the important aspects of testing and design for testability are also covered. After completing this module the student should be able to take the specification for an IC and, based on all the circuit, technology and financial constraints, be able to determine the optimum design approach. The student should have a good knowledge of the circuit design approaches and to be able to make use of the computer aided design tools available and to understand their purposes and limitations. The student should also have an appreciation of the purposes of IC testing and the techniques for including testability into the overall circuit design.
Content:
Design of ICs: the design cycle, trade-offs, floorplanning, power considerations, economics. IC technologies: Bipolar, nMOS, CMOS, BiCMOS, analogue, high frequency. Transistor level design: digital gates, analogue components, sub-circuit design. IC realisation: ASICs, PLDs, gate arrays, standard cell, full custom. CAD: schematic capture, hardware description languages, device and circuit modelling, simulation, layout, circuit extraction. Testing: types of testing, fault modelling, design for testability, built in self test, scan-paths.


ESML0144: Chinese stage 1A (beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: Chinese

Level: Level 1

Assessment: CW100

Requisites: Co ESML0145

Aims & learning objectives:
An introduction to basic Chinese ("putonghua") as a preparation to communicating in a Chinese context.
Content:
Basic Chinese grammatical forms. Recognition and production of essential Chinese characters; the Chinese phonetic system and the Pinyin system. Initial emphasis will be placed on speaking and listening. Reading and writing tasks of an appropriate nature will be gradually incorporated. Special attention will be paid to the recognition and differentiation of tones. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. Usually some evidence of competence in another foreign language is required.


ESML0145: Chinese stage 1B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites: Co ESML0144

Aims & learning objectives:
A continuation of Chinese Stage 1A
Content:
A continuation of Chinese Stage 1A


ESML0146: Chinese stage 2A (post beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A course to consolidate existing knowledge of Chinese, to develop listening, reading, speaking and writing, and to reinforce grammar, in order to enable students to operate in a Chinese speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering the appropriate grammatical structures and vocabulary and there will be continued emphasis on tones and pronunciation. Teaching materials will include reading passages from a variety of sources as well as topical and relevant audio and video material. Students are required to give short talks and undertake writing tasks in Chinese. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements.


ESML0147: Chinese stage 2B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Chinese Stage 2A
Content:
A continuation of Chinese Stage 2A


ESML0148: Chinese stage 3A (advanced beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course builds on the Chinese covered in Chinese Stage 2 A and B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary relating to China, Singapore and Taiwan. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which Chinese is spoken. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements.


ESML0149: Chinese stage 3B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Chinese Stage 3A
Content:
A continuation of Chinese Stage 3A


ESML0150: French stage 7A (advanced) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: French

Level: Level 2

Assessment: CW100

Requisites: Co ESML0151

Aims & learning objectives:
A course to consolidate, refine and enhance previous advanced knowledge of French
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. Teaching materials cover a wide range of cultural, political and social topics relating to France and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which French is spoken. Audio and video laboratories are available to augment classroom work. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. GCE Advanced Level French or equivalent required.


ESML0151: French stage 7B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: French

Level: Level 2

Assessment: CW100

Requisites: Co ESML0150

Aims & learning objectives:
A continuation of French Stage 7A
Content:
A continuation of French Stage 7A


ESML0152: French stage 8A (post advanced) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: French

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
Continued consolidation and enhancement of the language already acquired in French Stage 7A and 7B
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. Teaching materials cover a wide range of cultural, political and social topics relating to France and may include short works of literature or extracts from longer works. Where numbers permit, some subject-specific material may be included, covering the relevant scientific and technological areas and/or business and industry. There will be discussion and analysis in the target language of topics derived from teaching materials with the potential for small-scale research projects and presentations. Audio and video materials form an integral part of this study, along with newspaper, magazine and journal articles. Students are actively encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, by additional reading, links with native speakers and participating in events at which French is spoken. Audio and video laboratories are available to augment classroom work.


ESML0153: French stage 8B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: French

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of French Stage 8A
Content:
A continuation of French Stage 8A


ESML0154: French stage 9A (further advanced) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: French

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of the work outlined in French 8A and 8B
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. Teaching materials used cover a wide variety of sources and cover aspects of cultural political and social themes relating to France. Works of literature or extracts may be included, as well as additional subject-specific material, as justified by class size. This may encompass scientific and technological topics as well as materials relevant to business and industry. There will be discussion in the target language of topics relating to and generated by the teaching materials, with the potential for small-scale research projects and presentations. Audio and video materials form an integral part of this study, along with newspaper, magazine and journal articles. Students are actively encouraged to consolidate their linguistic proficiency outside the timetabled classes, by additional reading, links with native speakers and participating in events at which French is spoken. Audio and video laboratories are available to augment classroom work.


ESML0155: French stage 9B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: French

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of French Stage 9A
Content:
A continuation of French Stage 9A


ESML0156: French stage 4A (intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: French

Level: Level 1

Assessment: CW100

Requisites: Co ESML0157

Aims & learning objectives:
A course to consolidate existing knowledge of French, to develop listening, reading, writing and speaking, and to reinforce grammar, in order to enable students to operate in a French-speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation relating to a selection of topics. Remedial work is carried out where necessary. Teaching materials will include reading passages from a variety of sources as well as topical and relevant audio and video material. Students are required to give short presentations, conduct brief interviews and write dialogues, reports and letters in French. Audio and video laboratories are available to augment classroom work. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. GCSE Grade C in French or equivalent required.


ESML0157: French stage 4B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: French

Level: Level 1

Assessment: CW100

Requisites: Co ESML0156

Aims & learning objectives:
A continuation of French Stage 4A
Content:
A continuation of French Stage 4A


ESML0158: French stage 5A (post intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: French

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course builds on the French covered in French Stage 4A and 4B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation. Teaching materials cover a wide range of cultural, political and social topics relating to France and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which French is spoken. Audio and video laboratories are available to augment classroom work.


ESML0159: French stage 5B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: French

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of course French Stage 5A
Content:
A continuation of course French Stage 5A


ESML0160: French stage 6A (advanced intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: French

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course concentrates on the more advanced aspects of French with continued emphasis on practical application of language skills in a relevant context, in order to refine further the student's abilities.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. There is continued further development of the pattern of work outlined in French Stage 5A and 5B


ESML0161: French stage 6B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: French

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of course French Stage 6A
Content:
A continuation of course French Stage 6A


ESML0162: German stage 1A (beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: CW100

Requisites: Co ESML0163

Aims & learning objectives:
An introduction to everyday German, in order to enable the student to cope at a basic level in a German speaking environment, concentrating on oral/aural communication and reading.
Content:
Initial emphasis will be placed on speaking, listening and reading. As vocabulary is acquired more attention will be given to grammar. Writing tasks of a relevant and appropriate nature will be incorporated. Audio and video laboratories are available to augment classroom work Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. Usually some evidence of competence in another foreign language is required.


ESML0163: German stage 1B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: CW100

Requisites: Co ESML0162

Aims & learning objectives:
A continuation of German Stage 1A
Content:
A continuation of German Stage 1A


ESML0164: German stage 2A (post beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A course to build on language skills acquired in German Stage 1A and 1B to enhance listening, reading, speaking and writing, and to consolidate grammar, in order to enable students to operate in a German-speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation. Teaching materials will include reading passages from a wide variety of sources as well as topical and relevant audio and video material. Students are required to give short presentations, conduct brief interviews and write dialogues, reports and letters in German Audio and video laboratories are available to augment classroom work.


ESML0165: German stage 2B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of German Stage 2A
Content:
A continuation of German Stage 2A


ESML0166: German stage 3A (advanced beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course builds on the German covered in German Stage 2A and 2B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary relating to a selection of topics. Teaching materials cover a wide range of cultural, political and social topics relating to German speaking countries and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which German is spoken. Audio and video laboratories are available to augment classroom work.


ESML0167: German stage 3B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of German Stage 3A
Content:
A continuation of German Stage 3A


ESML0168: German stage 7A (advanced) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 2

Assessment: CW100

Requisites: Co ESML0169

Aims & learning objectives:
A course to consolidate, refine and enhance previous advanced knowledge of German
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. Teaching materials cover a wide range of cultural, political and social topics relating to German speaking countries and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which German is spoken. Audio and video laboratories are available to augment classroom work. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. GCE Advanced Level German or equivalent required.


ESML0169: German stage 7B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 2

Assessment: CW100

Requisites: Co ESML0168

Aims & learning objectives:
A continuation of German Stage 7A
Content:
A continuation of German Stage 7A


ESML0170: German stage 8A (post advanced) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
Continued consolidation and enhancement of the language already acquired in German Stage 7A and 7B
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. Teaching materials cover a wide range of cultural, political and social topics relating to German speaking countries and may include short works of literature or extracts from longer works. Where numbers permit, some subject-specific material may be included, covering the relevant scientific and technological areas and/or business and industry. There will be discussion and analysis in the target language of topics derived from teaching materials with the potential for small-scale research projects and presentations. Audio and video materials form an integral part of this study, along with newspaper, magazine and journal articles. Students are actively encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, by additional reading, links with native speakers and participating in events at which German is spoken. Audio and video laboratories are available to augment classroom work.


ESML0171: German stage 8B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of German Stage 8A
Content:
A continuation of German Stage 8A


ESML0174: German stage 4A (intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: CW100

Requisites: Co ESML0175

Aims & learning objectives:
A course to consolidate existing knowledge of German, to develop listening, reading, writing and speaking, and to reinforce grammar, in order to enable students to operate in a German-speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation relating to a selection of topics. Remedial work is carried out where necessary. Teaching materials will include reading passages from a variety of sources as well as topical and relevant audio and video material. Students are required to give short presentations, conduct brief interviews and write dialogues, reports and letters in German. Audio and video laboratories are available to augment classroom work. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. GCSE Grade C in German or equivalent required.


ESML0175: German stage 4B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: CW100

Requisites: Co ESML0174

Aims & learning objectives:
A continuation of German 4A
Content:
A continuation of German 4A


ESML0176: German stage 5A (post intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course builds on the German covered in German Stage 4A and 4B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation. Teaching materials cover a wide range of cultural, political and social topics relating to German speaking countries and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which German is spoken. Audio and video laboratories are available to augment classroom work.


ESML0177: German stage 5B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of German Stage 5A
Content:
A continuation of German Stage 5A


ESML0178: German stage 6A (advanced intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course concentrates on the more advanced aspects of German with continued emphasis on practical application of language skills in a relevant context, in order to refine further the student's abilities.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. There is continued further development of the pattern of work outlined in German Stage 5A and 5B


ESML0179: German stage 6B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of German Stage 6A
Content:
A continuation of German Stage 6A


ESML0180: Italian stage 1A (beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: Italian

Level: Level 1

Assessment: CW100

Requisites: Co ESML0181

Aims & learning objectives:
An introduction to everyday Italian, in order to enable the student to cope at a basic level in an Italian speaking environment, concentrating on oral/aural communication and reading.
Content:
Initial emphasis will be placed on speaking, listening and reading. As vocabulary is acquired more attention will be given to grammar. Writing tasks of a relevant and appropriate nature will be incorporated. Audio and video laboratories are available to augment classroom work Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. Usually some evidence of competence in another foreign language is required.


ESML0181: Italian stage 1B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: Italian

Level: Level 1

Assessment: CW100

Requisites: Co ESML0180

Aims & learning objectives:
A continuation of Italian Stage 1A
Content:
A continuation of Italian Stage 1A


ESML0182: Italian stage 2A (post beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: Italian

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A course to build on language skills acquired in Italian Stage 1A and 1B, to enhance listening, reading, speaking and writing, and to consolidate grammar, in order to enable students to operate in an Italian-speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation. Teaching materials will include reading passages from a wide variety of sources as well as topical and relevant audio and video material. Students are required to give short presentations, conduct brief interviews and write dialogues, reports and letters in Italian. Audio and video laboratories are available to augment classroom work.


ESML0183: Italian stage 2B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: Italian

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Italian Stage 2A
Content:
A continuation of Italian Stage 2A


ESML0184: Italian stage 3A (advanced beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: Italian

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course builds on the Italian covered in Italian Stage 2A and 2B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary relating to a selection of topics. Teaching materials cover a wide range of cultural, political and social topics relating to Italy and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which Italian is spoken. Audio and video laboratories are available to augment classwork.


ESML0185: Italian stage 3B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: Italian

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Italian Stage 3A
Content:
A continuation of Italian Stage 3A


ESML0186: Japanese 1A (beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: Japanese

Level: Level 1

Assessment: CW100

Requisites: Co ESML0187

Aims & learning objectives:
An introduction to everyday Japanese, in order to enable the student to cope at a basic level in a Japanese speaking environment, concentrating on oral/aural communication and the reading and writing of the 2 phonetic Japanese scripts and selected kanji (Chinese characters)
Content:
Initial emphasis will be placed on speaking, listening and reading. As vocabulary is acquired more attention will be given to grammar. Writing tasks of a relevant and appropriate nature will be incorporated. Course material will be drawn from a variety of sources and will include audio-visual resources. Audio and video laboratories are available to augment classroom work Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. Usually some evidence of competence in another foreign language is required.


ESML0187: Japanese 1B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: Japanese

Level: Level 1

Assessment: CW100

Requisites: Co ESML0186

Aims & learning objectives:
A continuation of Japanese Stage 1A
Content:
A continuation of Japanese Stage 1A


ESML0188: Japanese 2A (post beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic: Japanese

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A course to build on language skills acquired in Japanese Stage 1A and 1B, to enhance listening, reading, speaking and writing, and to consolidate grammar, in order to enable students to operate in a Japanese-speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation. Teaching materials will include reading passages from a wide variety of sources as well as topical and relevant audio and video material. Students are required to give short presentations, conduct brief interviews and undertake appropriate writing tasks in Japanese. Audio and video laboratories are available to augment classroom work.


ESML0189: Japanese 2B (3 credits)

Semester 2

Credits: 3

Contact:

Topic: Japanese

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Japanese Stage 2A
Content:
A continuation of Japanese Stage 2A


ESML0192: Spanish stage 1A (beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites: Co ESML0193

Aims & learning objectives:
An introduction to everyday Spanish, in order to enable the student to cope at a basic level in a Spanish speaking environment, concentrating on oral/aural communication and reading.
Content:
Initial emphasis will be placed on speaking, listening and reading. As vocabulary is acquired more attention will be given to grammar. Writing tasks of a relevant and appropriate nature will be incorporated. Audio and video laboratories are available to augment classroom work Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. Usually some evidence of competence in another foreign language is required.


ESML0193: Spanish stage 1B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites: Co ESML0192

Aims & learning objectives:
A continuation of Spanish Stage 1A
Content:
A continuation of Spanish Stage 1A


ESML0194: Spanish stage 2A (post beginners) (3 credits)

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A course to build on language skills acquired in Spanish Stage 1A and 1B, to enhance listening, reading, speaking and writing, and to consolidate grammar, in order to enable students to operate in a Spanish-speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation. Teaching materials will include reading passages from a wide variety of sources as well as topical and relevant audio and video material. Students are required to give short presentations, conduct brief interviews and write dialogues, reports and letters in Spanish. Audio and video laboratories are available to augment classroom work.


ESML0195: Spanish stage 2B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Spanish Stage 2A
Content:
A continuation of Spanish Stage 2A


ESML0198: Spanish stage 4A (intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites: Co ESML0199

Aims & learning objectives:
A course to consolidate existing knowledge of Spanish, to develop listening, reading, writing and speaking, and to reinforce grammar, in order to enable students to operate in a Spanish-speaking environment.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation relating to a selection of topics. Remedial work is carried out where necessary. Teaching materials will include reading passages from a variety of sources as well as topical and relevant audio and video material. Students are required to give short presentations, conduct brief interviews and write dialogues, reports and letters in Spanish. Audio and video laboratories are available to augment classroom work. Flexible provision dependent on demand, but selection criteria based on past examination performance and a needs analysis may be imposed and/or prioritisation according to Programme requirements. GCSE Grade C in Spanish or equivalent required.


ESML0199: Spanish stage 4B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites: Co ESML0198

Aims & learning objectives:
A continuation of Spanish Stage 4A
Content:
A continuation of Spanish Stage 4A


ESML0200: Spanish stage 5A (post intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course builds on the Spanish covered in Spanish Stage 4A and 4B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures, vocabulary and pronunciation. Teaching materials cover a wide range of cultural, political and social topics relating to Spain and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which Spanish is spoken. Audio and video laboratories are available to augment classroom work.


ESML0201: Spanish stage 5B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Spanish Stage 5A
Content:
A continuation of Spanish Stage 5A


ESML0202: Spanish stage 6A (advanced intermediate) (3 credits)

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
This course concentrates on the more advanced aspects of Spanish with continued emphasis on practical application of language skills in a relevant context, in order to refine further the student's abilities.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. There is continued further development of the pattern of work outlined in Spanish Stage 5A and 5B


ESML0203: Spanish stage 6B (3 credits)

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites:

Aims & learning objectives:
A continuation of Spanish Stage 6A
Content:
A continuation of Spanish Stage 6A


ESML0208: Chinese stage 3A (advanced beginners) (6 credits)

Semester 1

Credits: 6

Contact:

Topic: Chinese

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0209

Aims & learning objectives:
This course builds on the Chinese covered in Chinese Stage 2 A and B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary relating to China, Singapore and Taiwan. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which Chinese is spoken.


ESML0209: Chinese stage 3B (6 credits)

Semester 2

Credits: 6

Contact:

Topic: Chinese

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0208

Aims & learning objectives:
A continuation of Chinese Stage 3A
Content:
A continuation of Chinese Stage 3A


ESML0214: French stage 9A (further advanced) (6 credits)

Semester 1

Credits: 6

Contact:

Topic: French

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites: Co ESML0215

Aims & learning objectives:
A continuation of the work outlined in French 8A and 8B
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. Teaching materials used cover a wide variety of sources and cover aspects of cultural political and social themes relating to France. Works of literature or extracts may be included, as well as additional subject-specific material, as justified by class size. This may encompass scientific and technological topics as well as materials relevant to business and industry. There will be discussion in the target language of topics relating to and generated by the teaching materials, with the potential for small-scale research projects and presentations. Audio and video materials form an integral part of this study, along with newspaper, magazine and journal articles. Students are actively encouraged to consolidate their linguistic proficiency outside the timetabled classes, by additional reading, links with native speakers and participating in events at which French is spoken. Audio and video laboratories are available to augment classroom work.


ESML0215: French stage 9B (6 credits)

Semester 2

Credits: 6

Contact:

Topic: French

Level: Level 2

Assessment: EX45 CW40 OR15

Requisites: Co ESML0214

Aims & learning objectives:
A continuation of French Stage 9A
Content:
A continuation of French Stage 9A


ESML0220: French stage 6A (advanced intermediate) (6 credits)

Semester 1

Credits: 6

Contact:

Topic: French

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0221

Aims & learning objectives:
This course concentrates on the more advanced aspects of French with continued emphasis on practical application of language skills in a relevant context, in order to refine further the student's abilities.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. There is continued further development of the pattern of work outlined in French Stage 5A and 5B


ESML0221: French stage 6B (6 credits)

Semester 2

Credits: 6

Contact:

Topic: French

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0220

Aims & learning objectives:
A continuation of course French Stage 6A
Content:
A continuation of course French Stage 6A


ESML0226: German stage 3A (advanced beginners) (6 credits)

Semester 1

Credits: 6

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0227

Aims & learning objectives:
This course builds on the German covered in German Stage 2A and 2B in order to enhance the student's abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary relating to a selection of topics. Teaching materials cover a wide range of cultural, political and social topics relating to German speaking countries and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which German is spoken. Audio and video laboratories are available to augment classroom work.


ESML0227: German stage 3B (6 credits)

Semester 2

Credits: 6

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0226

Aims & learning objectives:
A continuation of German Stage 3A
Content:
A continuation of German Stage 3A


ESML0238: German stage 6A (advanced intermediate) (6 credits)

Semester 1

Credits: 6

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0239

Aims & learning objectives:
This course concentrates on the more advanced aspects of German with continued emphasis on practical application of language skills in a relevant context, in order to refine further the student's abilities.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. There is continued further development of the pattern of work outlined in German Stage 5A and 5B


ESML0239: German stage 6B (6 credits)

Semester 2

Credits: 6

Contact:

Topic: German

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0238

Aims & learning objectives:
A continuation of German Stage 6A
Content:
A continuation of German Stage 6A


ESML0244: Italian stage 3A (advanced beginners) (6 credits)

Semester 1

Credits: 6

Contact:

Topic: Italian

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0245

Aims & learning objectives:
This course builds on the Italian covered in Italian Stage 2A and 2B in order to enhance the students abilities in the four skill areas.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary relating to a selection of topics. Teaching materials cover a wide range of cultural, political and social topics relating to Italy and may include short works of literature. There will be discussion in the target language of topics derived from teaching materials, leading to small-scale research projects based on the same range of topics and incorporating the use of press reports and articles as well as audio and visual material. Students are encouraged to devote time and energy to developing linguistic proficiency outside the timetabled classes, for instance by additional reading and/or participating in informally arranged conversation groups and in events at which Italian is spoken. Audio and video laboratories are available to augment classwork


ESML0245: Italian stage 3B (6 credits)

Semester 2

Credits: 6

Contact:

Topic: Italian

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0244

Amis & Learning Objectives: A continuation of Italian Stage 3A.
Content:
A continuation of Italian Stage 3A.


ESML0262: Spanish stage 6A (advanced intermediate) (6 credits)

Semester 1

Credits: 6

Contact:

Topic: Spanish

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0263

Aims & learning objectives:
This course concentrates on the more advanced aspects of Spanish with continued emphasis on practical application of language skills in a relevant context, in order to refine further the student's abilities.
Content:
This unit contains a variety of listening, reading, speaking and writing tasks covering appropriate grammatical structures and vocabulary. There is continued further development of the pattern of work outlined in Spanish Stage 5A and 5B


ESML0263: Spanish stage 6B (6 credits)

Semester 2

Credits: 6

Contact:

Topic: Spanish

Level: Level 1

Assessment: EX45 CW40 OR15

Requisites: Co ESML0262

Aims & learning objectives:
A continuation of Spanish Stage 6A
Content:
A continuation of Spanish Stage 6A


ESML0264: EFL Academic Writing A

Semester 1

Credits: 3

Contact:

Topic: English Language Centre

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
The aim of this course is to improve students' academic writing skills in English, thereby enabling them to raise the standard of their degree course work.
Content:
Essay and report writing, to include overall structure, orthography, grammar, punctuation and appropriateness of writing style.


ESML0265: EFL Academic writing B

Semester 2

Credits: 3

Contact:

Topic: English Language Centre

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
Continuation of EFL Academic Writing A.
Content:
Continuation of EFL Academic Writing A.


ESML0270: Effective writing for native speakers of English

Semester 1

Credits: 3

Contact:

Topic: English Language Centre

Level: Level 1

Assessment: CW100

Requisites:

Students should not have taken this unit in a previous semester. Aims & learning objectives:
To develop native speaker students' essay writing skills by teaching study skills for academic writing and developing accuracy.
Content:
Surveying a book or article Note-taking and summarising skills Avoiding plagiarism Incorporating source material Referring to sources Essay structure Paragraph structure Planning an essay Writing introductions and conclusions Synthesing from different sources Cohesive devices Academic style - showing and avoiding personal commitment Grammatical accuracy Writing in examinations


ESML0270: Effective writing for native speakers of English

Semester 2

Credits: 3

Contact:

Topic: English Language Centre

Level: Level 1

Assessment: CW100

Requisites:

Students should not have taken this unit in a previous semester. Aims & learning objectives:
To develop native speaker students' essay writing skills by teaching study skills for academic writing and developing accuracy.
Content:
Surveying a book or article Note-taking and summarising skills Avoiding plagiarism Incorporating source material Referring to sources Essay structure Paragraph structure Planning an essay Writing introductions and conclusions Synthesing from different sources Cohesive devices Academic style - showing and avoiding personal commitment Grammatical accuracy Writing in examinations


ESML0382: EFL Spoken English A

Semester 1

Credits: 3

Contact:

Topic: English Language Centre

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
The aim of this course is to improve students' spoken English, thereby facilitating their social and academic interactions while in Britain, and enabling them to raise the standard of their degree course work.
Content:
Presentation and seminar skills; listening to lectures; pronunciation and fluency; colloquial English.


ESML0383: EFL Spoken English B

Semester 2

Credits: 3

Contact:

Topic: English Language Centre

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
Continuation of EFL Spoken English A.
Content:
Continuation of EFL Spoken English A.


MANG0069: Introduction to accounting & finance

Semester 2

Credits: 5

Contact:

Topic:

Level: Level 1

Assessment: EX50 CW50

Requisites:

Aims & learning objectives:
To provide students undertaking any type of degree study with an introductory knowledge of accounting and finance
Content:
The role of the accountant, corporate treasurer and financial controller Sources and uses of capital funds Understanding the construction and nature of the balance sheet and profit and loss account Principles underlying the requirements for the publication of company accounts Interpretation of accounts - published and internal, including financial ratio analysis Planning for profits, cash flow. Liquidity, capital expenditure and capital finance Developing the business plan and annual budgeting Estimating the cost of products, services and activities and their relationship to price. Analysis of costs and cost behaviour


MANG0071: Organisational behaviour

Semester 1

Credits: 5

Contact:

Topic:

Level: Level 1

Assessment: EX60 CW40

Requisites:

Aims & learning objectives:
To develop the student's understanding of people's behaviour within work organizations
Content:
Topics of study will be drawn from the following: The meaning of organising and organisation Socialisation, organisational norms and organisational culture Bureaucracy, organisational design and new organisational forms Managing organisational change Power and politics Business ethics Leadership and team work Decision -making Motivation Innovation Gender The future of work


MANG0072: Managing human resources

Semester 1

Credits: 5

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites:

Aims & learning objectives:
The course aims to give a broad overview of major features of human resource management. It examines issues from the contrasting perspectives of management, employees and public policy.
Content:
Perspectives on managing human resources. Human resource planning, recruitment and selection. Performance, pay and rewards. Control, discipline and dismissal.


MANG0073: Marketing

Semester 2

Credits: 5

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites: Ex MANG0016

Aims & learning objectives:
1. To provide an introduction to the concepts of Marketing. 2. To understand the principles and practice of marketing management. 3. To introduce students to a variety of environmental and other issues facing marketing today.
Content:
Marketing involves identifying and satisfying customer needs and wants. It is concerned with providing appropriate products, services, and sometimes ideas, at the right place and price, and promoted in ways which are motivating to current and future customers. Marketing activities take place in the context of the market, and of competition. The course is concerned with the above activities, and includes: consumer and buyer behaviour market segmentation, targetting and positioning market research product policy and new product development advertising and promotion marketing channels and pricing


MANG0074: Business information systems

Semester 1

Credits: 5

Contact:

Topic:

Level: Level 1

Assessment: EX60 CW25 OT15

Requisites:

Aims & learning objectives:
Information Technology (IT) is rapidly achieving ubiquity in the workplace. All areas of the business community are achieving expansion in IT and investing huge sums of money in this area. Within this changing environment, several key trends have defined a new role for computers: a) New forms and applications of IT are constantly emerging. One of the most important developments in recent years has been the fact that IT has become a strategic resource with the potential to affect competitive advantage: it transforms industries and products and it can be a key element in determining the success or failure of an organisation. b) Computers have become decentralised within the workplace: PCs sit on managers desks, not in the IT Department. The strategic nature of technology also means that managing IT has become a core competence for modern organisations and is therefore an important part of the task of general and functional managers. Organisations have created new roles for managers who can act as interfaces between IT and the business, combining a general technical knowledge with a knowledge of business. This course addresses the above issues, and, in particular, aims to equip students with IT management skills for the workplace. By this, we refer to those attributes that they will need to make appropriate use of IT as general or functional managers in an information-based age.
Content:
Following on from the learning aims and objectives, the course is divided into two main parts: Part I considers why IT is strategic and how it can affect the competitive environment, taking stock of the opportunities and problems it provides. It consists of lectures, discussion, case studies. The objective is to investigate the business impact of IS. For example: in what ways are IS strategic? what business benefits can IS bring? how does IS transform management processes and organisational relationships? how can organisations evaluate IS? how should IS, which transform organisations and extend across functions, levels and locations, be implemented? Part II examines a variety of technologies available to the manager and examines how they have been used in organisations. A number of problem-oriented case studies will be given to project groups to examine and discuss. The results may then be presented in class, and are open for debate. In summary, the aim of the course is to provide the knowledge from which students should be able to make appropriate use of computing and information technology in forthcoming careers. This necessitates some technical understanding of computing, but not at an advanced level. This is a management course: not a technical computing course.


MANG0076: Business policy

Semester 2

Credits: 5

Contact:

Topic:

Level: Level 1

Assessment: EX60 CW40

Requisites:

Aims & learning objectives:
To provide an appreciation of how organisations develop from their entrepreneurial beginnings through maturity and decline . To examine the interrelationship between concepts of policy and strategy formulation with the behavioural aspects of business To enable students to explore the theoretical notions behind corporate strategy Students are expected to develop skills of analysis and the ability to interpret complex business situations.
Content:
Business objectives , values and mission; industry and market analysis ; competitive strategy and advantage ; corporate life cycle; organisational structures and controls .


MATH0001: Numbers

Semester 1

Credits: 6

Contact:

Topic: Mathematics

Level: Level 1

Assessment: EX100

Requisites:

Students must have A-level Mathematics, normally Grade B or better, or equivalent, in order to undertake this unit. Aims & learning objectives:
Aims: This course is designed to cater for first year students with widely different backgrounds in school and college mathematics. It will treat elementary matters of advanced arithmetic, such as summation formulae for progressions and will deal matters at a certain level of abstraction. This will include the principle of mathematical induction and some of its applications. Complex numbers will be introduced from first principles and developed to a level where special functions of a complex variable can be discussed at an elementary level. Objectives: Students will become proficient in the use of mathematical induction. Also they will have practice in real and complex arithmetic and be familiar with abstract ideas of primes, rationals, integers etc, and their algebraic properties. Calculations using classical circular and hyperbolic trigonometric functions and the complex roots of unity, and their uses, will also become familiar with practice.
Content:
Natural numbers, integers, rationals and reals. Highest common factor. Lowest common multiple. Prime numbers, statement of prime decomposition theorem, Euclid's Algorithm. Proofs by induction. Elementary formulae. Polynomials and their manipulation. Finite and infinite APs, GPs. Binomial polynomials for positive integer powers and binomial expansions for non-integer powers of a+b. Finite sums over multiple indices and changing the order of summation. Algebraic and geometric treatment of complex numbers, Argand diagrams, complex roots of unity. Trigonometric, log, exponential and hyperbolic functions of real and complex arguments. Gaussian integers. Trigonometric identities. Polynomial and transcendental equations.


MATH0002: Functions, differentiation & analytic geometry

Semester 1

Credits: 6

Contact:

Topic: Mathematics

Level: Level 1

Assessment: EX100

Requisites:

Students must have A-level Mathematics, normally Grade B or better, or equivalent, in order to undertake this unit. Aims & learning objectives:
Aims: To teach the basic notions of analytic geometry and the analysis of functions of a real variable at a level accessible to students with a good 'A' Level in Mathematics. At the end of the course the students should be ready to receive a first rigorous analysis course on these topics. Objectives: The students should be able to manipulate inequalities, classify conic sections, analyse and sketch functions defined by formulae, understand and formally manipulate the notions of limit, continuity and differentiability and compute derivatives and Taylor polynomials of functions.
Content:
Basic geometry of polygons, conic sections and other classical curves in the plane and their symmetry. Parametric representation of curves and surfaces. Review of differentiation: product, quotient, function-of-a-function rules and Leibniz rule. Maxima, minima, points of inflection, radius of curvature. Graphs as geometrical interpretation of functions. Monotone functions. Injectivity, surjectivity, bijectivity. Curve Sketching. Inequalities. Arithmetic manipulation and geometric representation of inequalities. Functions as formulae, natural domain, codomain, etc. Real valued functions and graphs. Introduction to MAPLE. Orders of magnitude. Taylor's Series and Taylor polynomials - the error term. Differentiation of Taylor series. Taylor Series for exp, log, sin etc. Orders of growth. Orthogonal and tangential curves.


MATH0003: Integration & differential equations

Semester 1

Credits: 6

Contact:

Topic: Mathematics

Level: Level 1

Assessment: EX100

Requisites:

Students must have A-level Mathematics, normally Grade B or better, or equivalent, in order to undertake this unit. Aims & learning objectives:
Aims: This module is designed to cover standard methods of differentiation and integration, and the methods of solving particular classes of differential equations, to guarantee a solid foundation for the applications of calculus to follow in later courses. Objective: The objective is to ensure familiarity with methods of differentiation and integration and their applications in problems involving differential equations. In particular, students will learn to recognise the classical functions whose derivatives and integrals must be committed to memory. In independent private study, students should be capable of identifying, and executing the detailed calculations specific to, particular classes of problems by the end of the course.
Content:
Review of basic formulae from trigonometry and algebra: polynomials, trigonometric and hyperbolic functions, exponentials and logs. Integration by substitution. Integration of rational functions by partial fractions. Integration of parameter dependent functions. Interchange of differentiation and integration for parameter dependent functions. Definite integrals as area and the fundamental theorem of calculus in practice. Particular definite integrals by ad hoc methods. Definite integrals by substitution and by parts. Volumes and surfaces of revolution. Definition of the order of a differential equation. Notion of linear independence of solutions. Statement of theorem on number of linear independent solutions. General Solutions. CF+PI. First order linear differential equations by integrating factors; general solution. Second order linear equations, characteristic equations; real and complex roots, general real solutions. Simple harmonic motion. Variation of constants for inhomogeneous equations. Reduction of order for higher order equations. Separable equations, homogeneous equations, exact equations. First and second order difference equations.


MATH0004: Sets & sequences

Semester 2

Credits: 6

Contact:

Topic: Mathematics

Level: Level 1

Assessment: EX100

Requisites: Pre MATH0115, Pre MATH0001

Aims & learning objectives:
Aims: To introduce the concepts of logic that underlie all mathematical reasoning and the notions of set theory that provide a rigorous foundation for mathematics. A real life example of all this machinery at work will be given in the form of an introduction to the analysis of sequences of real numbers. Objectives: By the end of this course, the students will be able to: understand and work with a formal definition; determine whether straight-forward definitions of particular mappings etc. are correct; determine whether straight-forward operations are, or are not, commutative; read and understand fairly complicated statements expressing, with the use of quantifiers, convergence properties of sequences.
Content:
Logic: Definitions and Axioms. Predicates and relations. The meaning of the logical operators Ù, Ú, ˜, ®, «, ", $. Logical equivalence and logical consequence. Direct and indirect methods of proof. Proof by contradiction. Counter-examples. Analysis of statements using Semantic Tableaux. Definitions of proof and deduction. Sets and Functions: Sets. Cardinality of finite sets. Countability and uncountability. Maxima and minima of finite sets, max (A) = - min (-A) etc. Unions, intersections, and/or statements and de Morgan's laws. Functions as rules, domain, co-domain, image. Injective (1-1), surjective (onto), bijective (1-1, onto) functions. Permutations as bijections. Functions and de Morgan's laws. Inverse functions and inverse images of sets. Relations and equivalence relations. Arithmetic mod p. Sequences: Definition and numerous examples. Convergent sequences and their manipulation. Arithmetic of limits.


MATH0005: Matrices & multivariate calculus

Semester 2

Credits: 6

Contact:

Topic: Mathematics

Level: Level 1

Assessment: EX100

Requisites: Pre MATH0002

Aims & learning objectives:
Aims: The course will provide students with an introduction to elementary matrix theory and an introduction to the calculus of functions from IRn ® IRm and to multivariate integrals. Objectives: At the end of the course the students will have a sound grasp of elementary matrix theory and multivariate calculus and will be proficient in performing such tasks as addition and multiplication of matrices, finding the determinant and inverse of a matrix, and finding the eigenvalues and associated eigenvectors of a matrix. The students will be familiar with calculation of partial derivatives, the chain rule and its applications and the definition of differentiability for vector valued functions and will be able to calculate the Jacobian matrix and determinant of such functions. The students will have a knowledge of the integration of real-valued functions from IR² ® IR and will be proficient in calculating multivariate integrals.
Content:
Lines and planes in two and three dimension. Linear dependence and independence. Simultaneous linear equations. Elementary row operations. Gaussian elimination. Gauss-Jordan form. Rank. Matrix transformations. Addition and multiplication. Inverse of a matrix. Determinants. Cramer's Rule. Similarity of matrices. Special matrices in geometry, orthogonal and symmetric matrices. Real and complex eigenvalues, eigenvectors. Relation between algebraic and geometric operators. Geometric effect of matrices and the geometric interpretation of determinants. Areas of triangles, volumes etc. Real valued functions on IR³. Partial derivatives and gradients; geometric interpretation. Maxima and Minima of functions of two variables. Saddle points. Discriminant. Change of coordinates. Chain rule. Vector valued functions and their derivatives. The Jacobian matrix and determinant, geometrical significance. Chain rule. Multivariate integrals. Change of order of integration. Change of variables formula.


MATH0006: Vectors & applications

Semester 2

Credits: 6

Contact:

Topic: Mathematics

Level: Level 1

Assessment: EX100

Requisites: Pre MATH0001, Pre MATH0002, Pre MATH0003

Aims & learning objectives:
Aims: To introduce the theory of three-dimensional vectors, their algebraic and geometrical properties and their use in mathematical modelling. To introduce Newtonian Mechanics by considering a selection of problems involving the dynamics of particles. Objectives: The student should be familiar with the laws of vector algebra and vector calculus and should be able to use them in the solution of 3D algebraic and geometrical problems. The student should also be able to use vectors to describe and model physical problems involving kinematics. The student should be able to apply Newton's second law of motion to derive governing equations of motion for problems of particle dynamics, and should also be able to analyse or solve such equations.
Content:
Vectors: Vector equations of lines and planes. Differentiation of vectors with respect to a scalar variable. Curvature. Cartesian, polar and spherical co-ordinates. Vector identities. Dot and cross product, vector and scalar triple product and determinants from geometric viewpoint. Basic concepts of mass, length and time, particles, force. Basic forces of nature: structure of matter, microscopic and macroscopic forces. Units and dimensions: dimensional analysis and scaling. Kinematics: the description of particle motion in terms of vectors, velocity and acceleration in polar coordinates, angular velocity, relative velocity. Newton's Laws: Kepler's laws, momentum, Newton's laws of motion, Newton's law of gravitation. Newtonian Mechanics of Particles: projectiles in a resisting medium, constrained particle motion; solution of the governing differential equations for a variety of problems. Central Forces: motion under a central force.


MATH0007: Analysis: Real numbers, real sequences & series

Semester 1

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0006, Pre MATH0004, Pre MATH0005

Aims & learning objectives:
Aims: To reinforce and extend the ideas and methodology (begun in the first year unit MATH0004) of the analysis of the elementary theory of sequences and series of real numbers and to extend these ideas to sequences of functions. Objectives: By the end of the module, students should be able to read and understand statements expressing, with the use of quantifiers, convergence properties of sequences and series. They should also be capable of investigating particular examples to which the theorems can be applied and of understanding, and constructing for themselves, rigorous proofs within this context.
Content:
Suprema and Infima, Maxima and Minima. The Completeness Axiom. Sequences. Limits of sequences in epsilon-N notation. Bounded sequences and monotone sequences. Cauchy sequences. Algebra-of-limits theorems. Subsequences. Limit Superior and Limit Inferior. Bolzano-Weierstrass Theorem. Sequences of partial sums of series. Convergence of series. Conditional and absolute convergence. Tests for convergence of series; ratio, comparison, alternating and nth root tests. Power series and radius of convergence. Functions, Limits and Continuity. Continuity in terms of convergence of sequences. Algebra of limits. Convergence of sequences of functions, point-wise and uniform. Interchanging limits.


MATH0008: Algebra 1

Semester 1

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0006, Pre MATH0004, Pre MATH0005

Aims & learning objectives:
Aims: To teach the definitions and basic theory of abstract linear algebra and, through exercises, to show its applicability. Objectives: Students should know, by heart, the main results in linear algebra and should be capable of independent detailed calculations with matrices which are involved in applications. Students should know how to execute the Gram-Schmidt process.
Content:
Real and complex vector spaces, subspaces, direct sums, linear independence, spanning sets, bases, dimension. The technical lemmas concerning linearly independent sequences. Dimension. Complementary subspaces. Projections. Linear transformations. Rank and nullity. The Dimension Theorem. Matrix representation, transition matrices, similar matrices. Examples. Inner products, induced norm, Cauchy-Schwarz inequality, triangle inequality, parallelogram law, orthogonality, Gram-Schmidt process.


MATH0009: Ordinary differential equations & control

Semester 1

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0001, Pre MATH0002, Pre MATH0003, Pre MATH0005

Aims & learning objectives:
Aims: This course will provide standard results and techniques for solving systems of linear autonoumous differential equations. Based on this material an accessible introduction to the ideas of mathematical control theory is given. The emphasis here will be on stability and stabilization by feedback. Foundations will be laid for more advanced studies in nonlinear differential equations and control theory. Phase plane techniques will be introduced. Objectives: At the end of the course, students will be conversant with the basic ideas in the theory of linear autonomous differential equations and, in particular, will be able to employ Laplace transform and matrix methods for their solution. Moreover, they will be familiar with a number of elementary concepts from control theory (such as stability, stabilization by feedback, controllability) and will be able to solve simple control problems. The student will be able to carry out simple phase plane analysis.
Content:
Systems of linear ODEs: Normal form; solution of homogeneous systems; fundamental matrices and matrix exponentials; repeated eigenvalues; complex eigenvalues; stability; solution of non-homogeneous systems by variation of parameters. Laplace transforms: Definition; statement of conditions for existence; properties including transforms of the first and higher derivatives, damping, delay; inversion by partial fractions; solution of ODEs; convolution theorem; solution of integral equations. Linear control systems: Systems: state-space; impulse response and delta functions; transfer function; frequency-response. Stability: exponential stability; input-output stability; Routh-Hurwitz criterion. Feedback: state and output feedback; servomechanisms. Introduction to controllability and observability: definitions, rank conditions (without full proof) and examples. Nonlinear ODEs: Phase plane techniques, stability of equilibria.


MATH0010: Vector calculus & partial differential equations

Semester 1

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0002, Pre MATH0003, Pre MATH0005, Pre MATH0006

Aims & learning objectives:
Aims: The first part of the course provides an introduction to vector calculus, an essential toolkit in most branches of applied mathematics. The second part introduces methods for the solution of linear partial differential equations. Objectives: At the end of this course students will be familiar with the fundamental results of vector calculus (Gauss' theorem, Stokes' theorem) and will be able to carry out line, surface and volume integrals in general curvilinear coordinates. They should be able to solve Laplace's equation, the wave equation and the diffusion equation in simple domains, using the techniques of separation of variables, Laplace transforms and, in the case of the wave equation, D'Alembert's solution.
Content:
Vector calculus: Work and energy; curves and surfaces in parametric form; line, surface and volume integrals. Grad, div and curl; divergence and Stokes' theorems; curvilinear coordinates; scalar potential. Fourier series: Formal introduction to Fourier series, statement of Fourier convergence theorem; Fourier cosine and sine series. Partial differential equations: classification of linear second order PDEs; Laplace's equation in 2-D, including solution by separation of variables in rectangular and circular domains; wave equation in one space dimension, including D'Alembert's solution; the diffusion equation in one space dimension, including solution by Laplace transform.


MATH0011: Analysis: Real-valued functions of a real variable

Semester 2

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0007

Aims & learning objectives:
Aims: To give a thorough grounding, through rigorous theory and exercises, in the method and theory of modern calculus. To define the definite integral of certain bounded functions, and to explain why some functions do not have integrals. Objectives: Students should be able to quote, verbatim, and prove, without recourse to notes, the main theorems in the syllabus. They should also be capable, on their own initiative, of applying the analytical methodology to problems in other disciplines, as they arise. They should have a thorough understanding of the abstract notion of an integral, and a facility in the manipulation of integrals.
Content:
Weierstrass's theorem on continuous functions attaining suprema and infima on compact interval. Intermediate Value Theorem. Functions and Derivatives. Algebra of derivatives. Leibniz Rule and compositions. Derivatives of inverse functions. Rolle's Theorem and Mean Value Theorem. Cauchy's Mean Value Theorem. L'Hôpital's Rule. Monotonic functions. Maxima/Minima. Uniform Convergence. Cauchy's Criterion for Uniform Convergence. Weierstrass M-test for series. Power series. Differentiation of power series. Reimann integration up to the Fundamental Theorem of Calculus for the integral of a Riemann-integrable derivative of a function. Integration of power series. Interchanging integrals and limits. Improper integrals.


MATH0012: Algebra 2

Semester 2

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0008

Aims & learning objectives:
Aims: In linear algebra the aim is to take the abstract theory to a new level, different from the elementary treatment in MATH0008. Groups will be introduced and the most basic consequences of the axioms derived. Objectives: Students should be capable of finding eigenvalues and minimum polynomials of matrices and of deciding the correct Jordan Normal Form. Students should know how to diagonalise matrices, while supplying supporting theoretical justification of the method. In group theory they should be able to write down the group axioms and the main theorems which are consequences of the axioms.
Content:
Linear Algebra: Properties of determinants. Eigenvalues and eigenvectors. Geometric and algebraic multiplicity. Diagonalisability. Characteristic polynomials. Cayley-Hamilton Theorem. Minimum polynomial and primary decomposition theorem. Statement of and motivation for the Jordan Canonical Form. Examples. Orthogonal and unitary transformations. Symmetric and Hermitian linear transformations and their diagonalisability. Quadratic forms. Norm of a linear transformation. Examples. Group Theory: Group axioms and examples. Deductions from the axioms (e.g. uniqueness of identity, cancellation). Subgroups. Cyclic groups and their properties. Homomorphisms, isomorphisms, automorphisms. Cosets and Lagrange's Theorem. Normal subgroups and Quotient groups. Fundamental Homomorphism Theorem.


MATH0013: Mathematical modelling & fluids

Semester 2

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX75 CW25

Requisites: Pre MATH0009, Pre MATH0010

Aims & learning objectives:
Aims: To study, by example, how mathematical models are hypothesised, modified and elaborated. To study a classic example of mathematical modelling, that of fluid mechanics. Objectives: At the end of the course the student should be able to· construct an initial mathematical model for a real world process and assess this model critically· suggest alterations or elaborations of proposed model in light of discrepancies between model predictions and observed data or failures of the model to exhibit correct qualitative behaviour. The student will also be familiar with the equations of motion of an ideal inviscid fluid (Eulers equations, Bernoullis equation) and how to solve these in certain idealised flow situations.
Content:
Modelling and the scientific method: Objectives of mathematical modelling; the iterative nature of modelling; falsifiability and predictive accuracy; Occam's razor, paradigms and model components; self-consistency and structural stability. The three stages of modelling: (1) Model formulation, including the use of empirical information, (2) model fitting, and (3) model validation. Possible case studies and projects include: The dynamics of measles epidemics; population growth in the USA; prey-predator and competition models; modelling water pollution; assessment of heat loss prevention by double glazing; forest management. Fluids: Lagrangian and Eulerian specifications, material time derivative, acceleration, angular velocity. Mass conservation, incompressible flow, simple examples of potential flow.


MATH0014: Numerical analysis

Semester 2

Credits: 6

Contact:

Topic: Mathematics

Level: Level 2

Assessment: EX75 CW25

Requisites: Pre MATH0007, Pre MATH0008

Aims & learning objectives:
Aims: To teach elementary MATLAB programming. To teach those aspects of Numerical Analysis which are most relevant to a general mathematical training, and to lay the foundations for the more advanced courses in later years. Objectives: Students should have some facility with MATLAB programming. They should know simple methods for the approximation of functions and integrals, solution of initial and boundary value problems for ordinary differential equations and the solution of linear systems. They should also know basic methods for the analysis of the errors made by these methods, and be aware of some of the relevant practical issues involved in their implementation.
Content:
MATLAB Programming: handling matrices; M-files; graphics. Concepts of Convergence and Accuracy: Order of convergence, extrapolation and error estimation. Approximation of Functions: Polynomial Interpolation, error term. Quadrature and Numerical Differentiation: Newton-Cotes formulae. Gauss quadrature and numerical differentiation by method of undetermined coefficients. Composite formulae. Error terms. Numerical Solution of ODEs: Euler, Backward Euler, Trapezoidal and explicit Runge-Kutta methods. Stability. Consistency and convergence for one step methods. Error estimation and control. Shooting technique. Linear Algebraic Equations: Gaussian elimination, LU decomposition, pivoting, Matrix norms, conditioning, backward error analysis, iterative refinement. Direct methods for 2 point Boundary Value Problems.


MATH0015: Programming

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 1

Assessment: EX75 CW25

Requisites:

Aims & learning objectives:
Aims: To introduce functional programming while drawing out the similarities with abstract mathematics. To show that the mathematical thought process is a natural one for programming. To provide a gentle introduction to practical functional programming. Objectives: Students should be able to write simple functions, to understand the nature of types and to use data types appropriately. They should also appreciate the value and use of recursion.
Content:
Expressions, choice, scope and extent, functions, recursion, recursive datatypes, higher-order objects.


MATH0016: Information management 1

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 1

Assessment: EX50 CW50

Requisites: Ex MATH0126

Aims & learning objectives:
Aims: To introduce students to the use of a workstation, to word-processing, spreadsheets and relational data bases, and to the basic ideas of computing, and to the range of applications and misapplications of computers in science. To give students some experience of working in small groups. Objectives: Students should have a practical ability to use contemporary information management facilities. They should be able to write a good report, and they should have the confidence and the language to enable criticism of the use of computers in science.
Content:
Introduction: hardware, software, networking. Use of the workstation. Social issues. The relationship between computing and science. Computers as calculators, as simulating engines, and as new realities. Mathematical and computational models. The difficulty of validating or criticising computational models. Example of fluid flow, and the numerical wind tunnel. Experiment and decision making using computational models. Artificial intelligence, expert systems, neural nets, artificial evolution. The use and abuse of computers in science. Word processing, HTML, Scientific journalism and scientific reports. The goals of succinctness and clarity. Spreadsheets, organizing, exploring and presenting numerical data. Introduction to Statistics. Mean, standard deviation, histograms, the idea of probability density functions.


MATH0017: Principles of computer operation & architecture

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 1

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To introduce students to the structure, basic design, operation and programming of conventional, von Neumann computers at the machine level. Alternative approaches to machine design will also be examined so that some recent machine architectures can be introduced. In particular the course will develop to explore the relationships between what actually happens at the machine level and important ideas about, for example, aspects of high-level programming and data structures, that students encounter on parallel courses. Objectives: Familiarity with the von Neumann model, the nature and function of each of the main components and general principles of operation of the machines, including input and output transfers and basic numeric manipulations. Understanding of the characteristics of logic elements; the ability to manipulate/simplify Boolean functions; practical experience of simple combinatorial and sequential systems of logic gates; and a perception of the links between logic systems and elements of computer processors and store. Understanding of the role and function of an assembler and practical experience of reading and making simple changes to small, low-level programmes. Understanding of the test running and debugging of programmes.
Content:
Basic principles of computer operation: Brief historical introduction to computing machines. Binary basis of computer operation and binary numeration systems. Von Neumann computers and the structure, nature and relationship of their major elements. Principles of operation of digital computers; use of registers and the instruction cycle; simple addressing concepts; programming. Integers and floating point numbers. Input and output; basic principles and mechanisms of data transfer; programmed and data channel transfers; device status; interrupt programming; buffering; devices. Introduction to digital logic and low-level programming: Boolean algebra and behaviour of combinatorial and sequential logic circuits (supported by practical work). Logic circuits as building blocks for computer hardware. The nature and general characteristics of assemblers; a gentle introduction to simple assembler programmes to illustrate the major features and structures of low-level programmes. Running assembler programmes (supported by practical work).


MATH0018: Databases/performance analysis

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 2

Assessment: EX75 CW25

Requisites: Pre MATH0023

Aims & learning objectives:
Aims: To present an introductory account of the theory and practice of databases. To convey an understanding of the wide variety of techniques available for assessing the performance of programs and of computer-based systems. Objectives: To demonstrate understanding of the basic structure of relational database systems and to be able to make elementary queries. Students should be able to use basic benchmark programs, and the standard profiling tools. They should be aware of the limitations of such techniques, and of the wide variety of possible approaches to measuring, assessing, comparing and planning the performance of computer-based systems.
Content:
Databases: Network and relational models. Completeness of relational models, Codd's classification of canonical forms: first, second, third, and fourth normal forms. Keys, join, query languages (SQL, Query-by-example). Object databases. Performance Analysis: Benchmarking, including standard benchmarks such as Whetstone, Dhrystone. Benchmarking suites; SPECMarks. Contrast performance and test suites. Determining where time goes; profiling, sampling, emulating. Use of memory. Effects of architecture. Comparison of hardware and software monitoring. Program Comparison, Pitfalls, Performance Engineering, Queueing Theory, Case Studies.


MATH0019: Foundations

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 2

Assessment: EX75 CW25

Requisites: Pre MATH0004, Pre MATH0023

Aims & learning objectives:
Aims: To give the student an appreciation of the foundations of programming by considering functions as units of computation l-calculus and combinatory logic. To raise the issue of correctness and to develop a critical attitude toward computing in general and logic programming in particular. To illustrate how the various mathematical principles discussed in this Unit are translated in practical programming languages. Objectives: Students should be able to perform reductions in two reduction systems, and to prove elementary theorms in and about these calculi. To understand enough logic so that correct logic programming is possible. To be able to apply the theories of mathematical logic to the development of programming languages, to contrast pure rewriting with environment based interpretation operating over different domains (eg. values and types). To be able to read, understand and write programs in EuLisp.
Content:
String rewriting systems, Church-Rosser ideas, Zermelo Fraenkel set theory, types and sets, operations on types, examples in C and ML, functions as graphs, and functions as rules or processes; pure lambda calculus, reduction, Church Rosser again, ordered pairs, numerals in lambda calculus, Lisp; Scott domain theory; Logic, Logical validity, logical consequence, Conjunctive normal form, clausal form, semantic tableau methods, Prolog, resolution and unification.


MATH0020: Computability & decidability

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0004, Pre MATH0023

Aims & learning objectives:
Aims: To extend previous coverage of finite-state machines and Turing machines. To explore the limitations of Turing computability. Objectives: Students should appreciate the limitations of finite-state machines, and the availability of different possible standard formalisations of Turing machines. Students should understand what can and cannot be computed using Turing machines, and the rudiments of computational complexity theory.
Content:
Finite-State Machines: Revision of the basic properties of finite-state machines. Nondeterministic finite-state machines. What can and cannot be computed using finite-state machines. Turing Machines: Revision of Turing Machines. Connecting standard Turing Machines together. Introduction to Church's Thesis. Church's Thesis: Church's Thesis and the equivalence of different models of Turing machine. Church's Thesis (cont): Church's thesis and the equivalence of different models of computation - recursive functions, primitive and general recursion.Universal Turing Machines: Universal Turing Machines and limitations of Turing computability. Undecidability, the Halting Problem, reduction of one unsolvable problem to another. Computational Complexity: Philosophy of computational complexity, upper and lower time-bounded computations, complexity classes P and NP, NP-completeness.


MATH0021: Computer graphics

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 2

Assessment: EX75 CW25

Requisites:

Aims & learning objectives:
Aims: To provide an introduction to the techniques of representing, rendering, and displaying computer graphics, with assessed coursework. Objectives: Students will be able to distinguish modelling from rendering. They will be able to describe the relevant components of Euclidean geometry and their relationships to matrix algebra formulations. Students will know the difference between solid and surface modelling and be able to describe typical computer representations of each. Rendering for raster displays will be explainable in detail, including lighting models and a variety visual effects and defects. Students will be expected to describe the sampling problem and solutions for static pictures.
Content:
Background: Basic mechanisms, concepts and techniques for creating and displaying line drawings. Output devices, input devices. Packages. Coordinate systems, Euclidean geometry and transformations. Modelling: Mesh models and their representation. Constructive solid geometry and its representation. Specialised models. Rendering: Raster images; illumination models; meshes and hidden surface removal; scan-line rendering. Constructive Solid Geometry; ray-casting; visual effects and defects. Ordering dither; resolution; aliasing; colour. Students should have the ability to program in order to undertake this unit.


MATH0022: Formal program development

Semester 1

Credits: 6

Contact:

Topic: Computing

Level: Level 2

Assessment: EX100

Requisites: Pre MATH0023

Aims & learning objectives:
Aims: To convey to students the idea that programming can be presented as a systematic process of calculation with mathematically secure foundations. Objectives: Students should be able to develop modest programs systematically with a complete understanding of the mathematical foundations of the method advocated, and should understand the relationship between formal and informal methods for practical use.
Content:
Programs, specifications, code, refinement. Types, invariants and feasibility. Assignment and sequencing. Control structures: alternatives and iteration. Introduction to data refinement. Dijkstra's weakest precondition and language semantics in terms of it. Basic Theorems for the Alternative and Iterative Constructs and their relevance to program development. Use of the weakest precondition as a basis for the refinement calculus. Proving refinement laws from first principles; deriving one refinement law from another.


MATH0023: C Programming

Semester 2

Credits: 6

Contact:

Topic: Computing

Level: Level 1

Assessment: EX75 CW25

Requisites: Pre MATH0015, Pre MATH0126

Aims & learning objectives:
Aims: To ensure students appreciate the concept of an algorithm as an effective procedure. To introduce criteria by which algorithms may be chosen, and to demonstrate non-obvious algorithms. To provide practical skills at reading and writing programs in ISO Standard C. Objectives: Students should be able to determine the time and space complexity of short algorithms, and know 3 sorting algorithms and 2 searching algorithms. Students should be able to design, construct and test short programs in C, using standard libraries as appropriate. They should be able to read and comprehend the behaviour of programs written by others.
Content:
Algorithms: Introduction: Definition of an algorithm and characteristics of them. Basic Complexity: The efficiency of different algorithmic solutions. Best, average and worst case complexity in time and space. Fundamental Algorithms: Sorting. Searching. Space-time trade-offs. Graphs. Dijkstra's shortest path. C Programming: Introduction: C as a simplified programming language; ISO Standards. Basic Concepts: Functions, variables, weak typing. Statements and expressions. Data Structuring: Enumeration, struct and arrays. Pointers and construction of complex structures. The preprocessor: #include, #if and #define Programming: Input-output. Use of standard libraries. Multiple file programs. User interfaces. Professionalism: Coding standards, defensive programming, documentation, testing. Ethics.


MATH0024: Information management 2

Semester 2

Credits: 6

Contact:

Topic: Computing

Level: Level 1

Assessment: EX50 CW25 OT25

Requisites: Pre MATH0016, Pre MATH0126

Aims & learning objectives:
Aims: To introduce students to the use of a workstation, to wordprocessing, spreadsheets and relational databases, and to the basic ideas of computing, and to the range of applications and misapplications of computers in science. To give students some experience of working in small groups. Objectives: Students should have a practical ability to use contemporary information management facilities. They should be able to write a good report, and they should have the confidence and the language to enable criticism of the use of computers in science.
Content:
Normal and Poisson distributions. A simple introduction to confidence intervals and hypothesis testing. Elementary tools for dealing with non-normal data. An introduction to correlation. Computational experiments. Databases. Notations of set theory. Data types and structures. Hierarchical, network, and relational databases. Some natural operations on relations: union, projection, selection, Cartesian product, set difference. Design of relational databases. Access as an example of a database system. The integrated use of word processing, spreadsheets and relational databases.


MATH0025: Machine architectures, assemblers & low-level programming

Semester 2

Credits: 6

Contact:

Topic: Computing

Level: Level 1

Assessment: EX75 CW25

Requisites: Pre MATH0017

Aims & learning objectives:
Aims: To introduce students to the structure, basic design, operation and programming of conventional, von Neumann computers at the machine level. Alternative approaches to machine design will also be examined so that some recent machine architectures can be introduced. In particular the course will develop to explore the relationships between what actually happens at the machine level and important ideas about, for example, aspects of high-level programming and data structures, that students encounter on parallel courses. Objectives: Development of a critical awareness that what happens at machine level is strongly related to the forms and conventions developed at higher levels of programming. Reinforcement of structured programming by practical development of low-level programming skills that can be related to high-level practice. Awareness of the potential advantages and disadvantages of different architectures; appreciation of the importance of the synergistic relationship between hardware and system software, e.g. in operating systems. A launch point for more advanced architecture studies.
Content:
Low-level programming and structures: A more detailed examination of machine architecture and facilities, exemplified by the 68000 series. Further exploration of different modes of operand addressing; the implementation of program control mechanisms; and subroutines. The relationship between the low-level and aspects of high-level, structured programming such as decisions, loops and modules; nested and recursive routines and conventions for parameter transmission at high and low levels will be examined (supported by practical programming work which may continue throughout the semester). Aspects of modern computer architectures: Non von Neumann architectures and modern approaches to machine design, including , for example, RISC (vs. CISC) architectures. Topics in contemporary machine design, such as pipelining; parallel processing and multiprocessors. The interaction between hardware and software.


MATH0026: Projects & their management

Semester 2

Credits: 6

Contact:

Topic: Computing

Level: Level 2

Assessment: CW100

Requisites:

Aims & learning objectives:
Aims: To gain experience of working with other people and, on a small-scale, some of the problems that arise in the commercial development of software. To appreciate the personal, corporate and public interest ethical problems arising from all aspects of computer systems. To distinguish between scientific and pseudo-scientific modes of presentation, and to encourage competence in the scientific mode. Objectives: To carry out the full cycle of the first phase of development of a software package, namely; requirements analysis, design, implementation, documentation and delivery. To know the main terms of the Data Protection Act and be able to explain its application in a variety of contexts. To be able to design a presentation for a given audience. To be able to assess a presentation critically.
Content:
Project Management: Software engineering techniques, Controlling software development, Project planning/ Management, Documentation, Design, Quality Assurance, Testing. Professional Issues: Ethical and legal matters in the context of information techno